Genética

Transcrição do DNA: o que é, como acontece, pra que serve

Transcrição do DNA: o que é, como acontece, pra que serve
Avalie está aula

Tanto nos procariontes como nos eucariontes, a segunda função do DNA (a primeira foi a replicação) é fornecer a informação necessária para construir as proteínas necessárias para que a célula possa realizar todas as suas funções. Para fazer isso, o DNA é “lido” ou transcrito em uma molécula de mRNA . O mRNA então fornece o código para formar uma proteína por um processo chamado tradução. Através dos processos de transcrição e tradução, uma proteína é construída com uma sequência específica de aminoácidos que foi originalmente codificada no DNA. Este módulo discute os detalhes da transcrição.

O dogma central: o DNA codifica o RNA; RNA codifica proteína

O fluxo de informação genética em células de DNA para mRNA para proteína é descrito pelo dogma central ( Figura ), que afirma que os genes especificam as sequências de mRNAs, que por sua vez especificam as sequências de proteínas.

Um fluxograma mostra o DNA, com uma seta para o RNA, que tem uma seta para proteína.
O dogma central afirma que o DNA codifica o RNA, que por sua vez codifica a proteína.

A cópia do DNA para mRNA é relativamente simples, com um nucleotídeo sendo adicionado à cadeia de mRNA para cada nucleotídeo complementar lido na fita de DNA. A tradução para proteína é mais complexa porque grupos de três nucleotídeos de mRNA correspondem a um aminoácido da seqüência de proteína. No entanto, como veremos no próximo módulo, a tradução para a proteína ainda é sistemática, de modo que os nucleotídeos 1 a 3 correspondam ao aminoácido 1, os nucleotídeos 4 a 6 correspondam ao aminoácido 2 e assim por diante.

Transcrição: do DNA ao mRNA

Procariotas e eucariotos realizam fundamentalmente o mesmo processo de transcrição, com a importante diferença do núcleo ligado à membrana em eucariotos. Com os genes ligados no núcleo, a transcrição ocorre no núcleo da célula e o transcrito de mRNA deve ser transportado para o citoplasma. Os procariotos, que incluem bactérias e archaea, não possuem núcleos ligados à membrana e outras organelas, e a transcrição ocorre no citoplasma da célula. Em procariotas e eucariotos, a transcrição ocorre em três etapas principais: iniciação, alongamento e terminação.

Iniciação

A transcrição requer que a dupla hélice do DNA desenrole parcialmente na região de síntese de mRNA. A região do desenrolamento é chamada de bolha de transcrição . A sequência de DNA na qual as proteínas e enzimas envolvidas na transcrição se ligam para iniciar o processo é chamada de promotor . Na maioria dos casos, os promotores existem a montante dos genes que regulam. A sequência específica de um promotor é muito importante porque determina se o gene correspondente é transcrito todo o tempo, em parte do tempo, ou quase nunca ( Figura ).

A ilustração mostra um fio de modelo e um fio sem estrutura de DNA, com uma seção de promotor em vermelho na faixa de modelo. A jusante do promotor é uma RNA polimerase onde o RNA está sendo sintetizado.
O início da transcrição começa quando o DNA é desenrolado, formando uma bolha de transcrição. Enzimas e outras proteínas envolvidas na transcrição ligam-se ao promotor.

Alongamento

A transcrição sempre procede de um dos dois filamentos de DNA, que é chamado de strand template . O produto de mRNA é complementar à fita molde e é quase idêntico à outra fita de DNA, chamada de fita não-moldada , com a exceção de que o RNA contém um uracilo (U) no lugar da timina (T) encontrada no DNA.

Durante o alongamento, uma enzima chamada RNA polimeraseprocede ao longo da matriz de DNA adicionando nucleotídeos por emparelhamento de bases com o DNA molde de uma maneira similar à replicação do DNA, com a diferença que uma cadeia de RNA está sendo sintetizada que não permanece ligada ao DNA template. À medida que prossegue o alongamento, o DNA é continuamente desenrolado à frente da enzima central e rebobinado por trás dela ( Figura ).

Ilustração mostra a síntese de RNA por RNA polimerase. A cadeia de RNA é sintetizada na direção 5 'para 3'.
Durante o alongamento, a RNA polimerase segue ao longo do molde de DNA, sintetiza o mRNA na direção 5 ‘para 3’ e, então, desenrola o DNA à medida que é lido.

Terminação

Uma vez que um gene é transcrito, a polimerase procariótica precisa ser instruída a dissociar-se do molde de DNA e liberar o mRNA recém-produzido. Dependendo do gene que está sendo transcrito, existem dois tipos de sinais de terminação, mas ambos envolvem sequências repetidas de nucleotídeos no molde de DNA que resultam em bloqueio da RNA polimerase, deixando o modelo de DNA e liberando o transcrito de mRNA.

Na rescisão, o processo de transcrição está completo. Numa célula procariótica, no momento em que a terminação ocorre, o transcrito já teria sido usado para sintetizar parcialmente numerosas cópias da proteína codificada porque estes processos podem ocorrer concorrentemente usando múltiplos ribossomas (polirribossomas) ( Figura ). Em contraste, a presença de um núcleo em células eucarióticas impede a transcrição e tradução simultâneas.

A ilustração mostra vários mRNAs sendo transcritos de um gene. Os ribossomos se ligam ao mRNA antes que a transcrição seja feita e comecem a produzir proteínas.
Múltiplas polimerases podem transcrever um único gene bacteriano enquanto numerosos ribossomas simultaneamente traduzem os transcritos de mRNA em polipeptídeos. Desta forma, uma proteína específica pode atingir rapidamente uma alta concentração na célula bacteriana.

Processamento de RNA eucariótico

Os mRNAs eucarióticos recentemente transcritos devem passar por várias etapas de processamento antes de poderem ser transferidos do núcleo para o citoplasma e transformados em uma proteína. Os passos adicionais envolvidos na maturação de ARNm eucariótico criam uma molécula que é muito mais estável do que um ARNm procariótico. Por exemplo, os ARNm eucarióticos duram várias horas, enquanto o ARNm procariótico típico não dura mais do que cinco segundos.

O transcrito de mRNA é primeiramente revestido em proteínas estabilizadoras de RNA para evitar que ele se degrade enquanto é processado e exportado para fora do núcleo. Isso ocorre enquanto o pré-RNAm ainda está sendo sintetizado pela adição de um “cap” de nucleotídeo especial ao extremo 5 ‘do transcrito crescente. Além de prevenir a degradação, os fatores envolvidos na síntese de proteínas reconhecem o limite para ajudar a iniciar a tradução pelos ribossomos.

Uma vez completo o alongamento, uma enzima adiciona uma sequência de aproximadamente 200 resíduos de adenina à extremidade 3 ‘, chamada cauda poli-A. Esta modificação protege ainda mais o pré-mRNA da degradação e sinaliza para fatores celulares que o transcrito precisa ser exportado para o citoplasma.

Genes eucarióticos são compostas por sequências de codificação de proteínas chamados exs ( ex no significa que eles são expressão) e int ervening sequências chamadas introns ( INT ron indica a sua intpapel de manutenção). Os intrões são removidos do pré-ARNm durante o processamento. Sequências intrônicas em mRNA não codificam proteínas funcionais.

É essencial que todos os introns do pré-mRNA sejam removidos completamente e com precisão antes da síntese de proteínas, de modo que os exons se unam para codificar os aminoácidos corretos. Se o processo erra mesmo por um único nucleotídeo, a seqüência dos exons reunidos seria deslocada e a proteína resultante não seria funcional. O processo de remoção de introns e reconexão de exons é chamado splicing ( Figura ). Os intrões são removidos e degradados enquanto o pré-ARNm ainda está no núcleo.

A ilustração mostra um transcrito de RNA primário com três exons e dois introns. Na transcrição combinada, os introns são removidos e os exons são fundidos. Uma capa 5 'e uma cauda poli-A também foram adicionadas.
O mRNA eucariótico contém introns que devem ser separados. Um 5 ‘cap e 3’ cauda também são adicionados.
Para entender melhor esse assunto veja também:

Resumo

Em procariotas, a síntese de mRNA é iniciada em uma sequência promotora no molde de DNA. O alongamento sintetiza o novo mRNA. A terminação libera o mRNA e ocorre por mecanismos que bloqueiam a RNA polimerase e fazem com que ela caia do molde de DNA.

Os ARNm eucarióticos recentemente transcritos são modificados com um tampão e uma cauda poli-A. Essas estruturas protegem o mRNA maduro da degradação e ajudam a exportá-lo do núcleo. Os mRNAs eucarióticos também sofrem splicing, no qual os introns são removidos e os exons são reconectados com precisão de nucleotídeo único. Apenas os mRNAs acabados são exportados do núcleo para o citoplasma.

Glossário

exon
uma sequência presente no mRNA codificador de proteínas após a conclusão do processamento de pré-mRNA
intrão
sequências intervenientes que não codificam proteínas que são processadas a partir de mRNA durante o processamento
mRNA
RNA mensageiro; uma forma de RNA que carrega o código da seqüência de nucleotídeos para uma seqüência de proteína que é traduzida em uma seqüência polipeptídica
costa nontemplate
a fita de DNA que não é usada para transcrever mRNA; esta cadeia é idêntica ao mRNA, exceto que os nucleotídeos T no DNA são substituídos por nucleotídeos U no mRNA
promotor
uma sequência no DNA à qual a RNA polimerase e os fatores associados se ligam e iniciam a transcrição
RNA polimerase
uma enzima que sintetiza uma cadeia de RNA de um molde de DNA vertente
emenda
o processo de remoção de introns e reconexão de exons em um pré-mRNA
faixa de modelo
a cadeia de DNA que especifica a molécula de mRNA complementar
bolha de transcrição
a região do DNA desenrolado localmente que permite a transcrição de mRNA

Você gostar de ver isso

Deixe uma resposta

O seu endereço de e-mail não será publicado. Campos obrigatórios são marcados com *

Close
Close
Início - Planeta Biológico

    O que ṣo mol̩culas РDe que ṣo feitas

    Em seu nível mais fundamental, a vida é composta de matéria. A matéria ocupa espaço e tem massa. Toda matéria é composta de elementos ,…

    Principais vias metabólicas

    Você aprendeu sobre o catabolismo da glicose, que fornece energia para as células vivas. Mas as coisas vivas consomem mais do…

    Ciclo Celular: fases, períodos, o que é – Resumo

    O ciclo celular é uma série ordenada de eventos envolvendo crescimento celular e divisão celular que produz duas novas células filhas. As células…

    Estrutura e Função dos ribossomos

    Função dos Ribossomos: Traçando sua origem para mais de 3 a 4 bilhões de anos atrás, acredita-se que os ribossomos…

    Diferen̤as entre c̩lulas eucariontes e procariontes РResumo

    As células se enquadram em uma das duas grandes categorias: procariótica e eucariótica. Os organismos predominantemente unicelulares dos domínios Bactéria e…

    O que são bactérias: características, tipos, estrutura

    Bactérias são organismos microscópicos antigos que são encontrados em toda parte da Terra. Eles são um dos três principais ramos da árvore…

    Carboidratos: tipos, função, estrutura – Sacarídeos

    Os carboidratos são uma das quatro principais categorias de moléculas encontradas nos seres vivos – as outras três são proteínas , lipídios e ácidos nucleicos . Eles…

    O que ̩ Espermatog̻nese Рforma̤̣o dos gametas masculinos

    Espermatogênese : No reino animal (entre os animais dióicos ), a união do espermatozóide e óvulo é a base da reprodução da espécie. Por um…

    Introdṳ̣o a citologia РComo as c̩lulas ṣo estudas

    Uma célula é a menor unidade de uma coisa viva. Uma coisa viva, como você, é chamada de organismo. Assim, as células…

    Arqueas: o que são, tipos, características – Archaeas

    As Arqueas também conhecidas como Archaeas é um vasto grupo de microrganismos pouco conhecidos . Eles formam um dos três…

    Glicólise: o que é, processos, função – Resumo

    Mesmo reações exergônicas de liberação de energia requerem uma pequena quantidade de energia de ativação para prosseguir. No entanto, considere as…

    O que ̩ metabolismo Рanabolismo, catabolismo e energia

    Os cientistas usam o termo bioenergética para descrever o conceito de fluxo de energia ( Figura ) através de sistemas vivos, como as células. Processos…